Bonnet, W. & Celik, T. 2021. Random Sampling-Based Relative. IEEE Geoscience and Remote Sensing Letters. 9321136:1–4.Byamugisha, J., Saib, W., Gaelejwe, T., Jeewa, A., & Molapo, M. (2020a). Abstract PR-12: Towards verifying results from biomedical deep learning models using the UMLS: Cases of primary tumor site classification and cancer Named Entity Recognition. Association for the Advancement of Artificial Intelligence, PR-12-PR-12. https://doi.org/10.1158/1557-3265.adi21-pr-12

Byamugisha, J., Saib, W., Gaelejwe, T., Jeewa, A., & Molapo, M. (2020b). Towards Verifying Results from Biomedical NLP Machine Learning Models Using the UMLS: Cases of Classification and Named Entity Recognition. www.aaai.org

Chabumba, D.R., Jadhav, A. & Ajoodha, R. 2021. Predicting Telecommunication Customer Churn using Machine Learning Techniques. Interdisciplinary Research in Technology and Management. (September, 14):625–636.

Choma, J., Correa, F., Dahbi, S.-E., Dwolatzky, B., Dwolatzky, L., Hayasi, K., Lieberman, B., Maslo, C., et al. (in press). Worldwide Effectiveness of Various Non-Pharmaceutical Intervention Control Strategies on the Global COVID-19 Pandemic: A Linearised Control Model. medRxiv. (May, 12):2020.04.30.20085316.

Daniel, L.O., Sigauke, C., Chibaya, C. & Mbuvha, R. 2020. Short-term wind speed forecasting using statistical and machine learning methods. Algorithms. 13(6).

Essa, Y., Hunt, H. G. P., Gijben, M., & Ajoodha, R. (2022). Deep Learning Prediction of Thunderstorm Severity Using Remote Sensing Weather Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15(June), 4004–4013. https://doi.org/10.1109/JSTARS.2022.3172785

Freeborough, W. & van Zyl, T. 2022. Investigating Explainability Methods in Recurrent Neural Network Architectures for Financial Time Series Data. Applied Sciences (Switzerland). 12(3):1–15.

Freeborough, W., Gentle, N. & Rey, M.E.C. 2021. WRKY Transcription Factors in Cassava Contribute to Regulation of Tolerance and Susceptibility to Cassava Mosaic Disease through Stress Responses. Viruses. 13(1820).

Harling, G., Gómez-Olivé, F.X., Tlouyamma, J., Mutevedzi, T., Kabudula, C.W., Mahlako, R., Singh, U., Ohene-Kwofie, D., Mahlako R., et al. 2021. Protective behaviors and secondary harms resulting from nonpharmaceutical interventions during the COVID-19 epidemic in South Africa: Multisite, prospective longitudinal study. JMIR Public Health and Surveillance. 7(5):1–17.

Mabunda, J.G.K., Jadhav, A. & Ajoodha, R. 2021. Sentiment Analysis of Student Textual Feedback to Improve Teaching. in Interdisciplinary Research in Technology and Management CRC Press. 643–651.

Masangu, L., Jadhav, A. & Ajoodha, R. 2021. Predicting student academic performance using data mining techniques. Advances in Science, Technology and Engineering Systems. 6(1):153–163.

Mutavhatsindi, T., Sigauke, C. & Mbuvha, A.R. 2020. Forecasting hourly global horizontal solar irradiance in South Africa using machine learning models. IEEE Access. 8:198872–198885.

Ngwenduna, K.S. & Mbuvha, R. 2021. Alleviating class imbalance in actuarial applications using generative adversarial networks. Risks. 9(3):1–33.

Nkolele, R. 2020. Mapping of Narrative Text Fields To ICD-10 Codes Using Natural Language Processing and Machine Learning. in Proceedings of the The Fourth Widening Natural Language Processing Workshop Association for Computational Linguistics (ACL). 131–135.

Orievulu, K. S. (2020). (Re-engaging) the “tyranny” of process in participatory development programming in Africa: Fadama in Nigeria as a case study. South African Journal of International Affairs, 27(2), 243–264. https://doi.org/10.1080/10220461.2020.1785930

Ratshilengo, M., Sigauke, C. & Bere, A. 2021. Short-term Solar Power Forecasting using Genetic Algorithms: An Application using South African Data. Applied Sciences (Switzerland). 11(9).

Ohamadike, Nnaemeka, Orakwe, E.C. “The Role of Education in the Public Perception of Corruption in Sudan and Zimbabwe”. Politeia, 11 pages . https://doi.org/10.25159/2663-6689/13663.